macroeco.models.expon_uptrunc¶
- macroeco.models.expon_uptrunc = <macroeco.models._distributions.expon_uptrunc_gen object at 0x108661bd0>¶
An upper-truncated exponential continuous random variable.
\[f(x) = \frac{\lambda e^{-\lambda x}}{1 - e^{-\lambda b}}\]for b >= x >= 0. The loc and scale parameters are not used.
Parameters: x : array_like
quantiles
q : array_like
lower or upper tail probability
lam, b : array_like
shape parameters
loc : array_like, optional
location parameter (default=0)
scale : array_like, optional
scale parameter (default=1)
size : int or tuple of ints, optional
shape of random variates (default computed from input arguments )
moments : str, optional
composed of letters [‘mvsk’] specifying which moments to compute where ‘m’ = mean, ‘v’ = variance, ‘s’ = (Fisher’s) skew and ‘k’ = (Fisher’s) kurtosis. (default=’mv’)
Alternatively, the object may be called (as a function) to fix the shape, :
location, and scale parameters returning a “frozen” continuous RV object: :
rv = expon_uptrunc(lam, b, loc=0, scale=1) :
- Frozen RV object with the same methods but holding the given shape, location, and scale fixed.
mu : float
distribution mean
b : float
distribution upper limit, defaults to sum of data
Examples
>>> import macroeco.models as md >>> import numpy as np
>>> # Get the rate parameter of the exponential distribution from a mean >>> md.expon_uptrunc.translate_args(20, 100) (array(0.04801007549722518), 100)
>>> # Get the pdf >>> md.expon_uptrunc.pdf(np.linspace(0.1, 10, num=10), 0.05, 100) array([ 0.05008812, 0.04740766, 0.04487064, 0.0424694 , 0.04019665, 0.03804554, 0.03600953, 0.03408249, 0.03225857, 0.03053226])
>>> # Get the cdf >>> md.expon_uptrunc.cdf(np.linspace(0.1, 10, num=10), 0.05, 100) array([ 0.00502135, 0.05863052, 0.10937079, 0.15739571, 0.20285058, 0.24587294, 0.28659296, 0.32513386, 0.36161225, 0.3961385 ])
>>> # Get the ppf >>> md.expon_uptrunc.ppf(0.8, 0.05, 100) 31.656858541834165
>>> # Draw a random sample >>> samp = md.expon_uptrunc.rvs(0.05, 100, size=100)
>>> # Fit the model to data >>> md.expon_uptrunc.fit_mle(samp) (0.06080396315704938, 1644.6296393823973)
Methods
rvs(lam, b, loc=0, scale=1, size=1) Random variates. pdf(x, lam, b, loc=0, scale=1) Probability density function. logpdf(x, lam, b, loc=0, scale=1) Log of the probability density function. cdf(x, lam, b, loc=0, scale=1) Cumulative density function. logcdf(x, lam, b, loc=0, scale=1) Log of the cumulative density function. sf(x, lam, b, loc=0, scale=1) Survival function (1-cdf — sometimes more accurate). logsf(x, lam, b, loc=0, scale=1) Log of the survival function. ppf(q, lam, b, loc=0, scale=1) Percent point function (inverse of cdf — percentiles). isf(q, lam, b, loc=0, scale=1) Inverse survival function (inverse of sf). moment(n, lam, b, loc=0, scale=1) Non-central moment of order n stats(lam, b, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’). entropy(lam, b, loc=0, scale=1) (Differential) entropy of the RV. fit(data, lam, b, loc=0, scale=1) Parameter estimates for generic data. expect(func, lam, b, loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds) Expected value of a function (of one argument) with respect to the distribution. median(lam, b, loc=0, scale=1) Median of the distribution. mean(lam, b, loc=0, scale=1) Mean of the distribution. var(lam, b, loc=0, scale=1) Variance of the distribution. std(lam, b, loc=0, scale=1) Standard deviation of the distribution. interval(alpha, lam, b, loc=0, scale=1) Endpoints of the range that contains alpha percent of the distribution