macroeco.models.logser_uptrunc¶
- macroeco.models.logser_uptrunc = <macroeco.models._distributions.logser_uptrunc_gen object at 0x1086537d0>¶
Upper truncated logseries random variable.
This distribution was described by Harte (2011) [1]
\[p(x) = \frac{1}{Z} \frac{p^n}{n}\]where Z is the normalizing factor
Parameters: x : array_like
quantiles
q : array_like
lower or upper tail probability
p, b : array_like
shape parameters
loc : array_like, optional
location parameter (default=0)
size : int or tuple of ints, optional
shape of random variates (default computed from input arguments )
moments : str, optional
composed of letters [‘mvsk’] specifying which moments to compute where ‘m’ = mean, ‘v’ = variance, ‘s’ = (Fisher’s) skew and ‘k’ = (Fisher’s) kurtosis. (default=’mv’)
Alternatively, the object may be called (as a function) to fix the shape and :
location parameters returning a “frozen” discrete RV object: :
rv = logser_uptrunc(p, b, loc=0) :
- Frozen RV object with the same methods but holding the given shape and location fixed.
p : float
p parameter of the logseries distribution
b : float
Upper bound of the distribution
Notes
Code adapted from Ethan White’s macroecology_tools and version 0.1 of macroeco
References
[1] Harte, J. (2011). Maximum Entropy and Ecology: A Theory of Abundance, Distribution, and Energetics. Oxford, United Kingdom: Oxford University Press. Examples
>>> import macroeco.models as md
>>> # Define a logseries distribution by specifying the necessary parameters >>> logser_dist = md.logser_uptrunc(p=0.9, b=1000)
>>> # Get the pmf >>> logser_dist.pmf(1) 0.39086503371292664
>>> # Get the cdf >>> logser_dist.cdf(10) 0.9201603889810761
>>> # You can also use the following notation >>> md.logser_uptrunc.pmf(1, 0.9, 1000) 0.39086503371292664 >>> md.logser_uptrunc.cdf(10, 0.9, 1000) 0.9201603889810761
>>> # Get a rank abundance distribution for 30 species >>> rad = md.logser_uptrunc.rank(30, 0.9, 1000) >>> rad array([ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 2., 2., 2., 2., 2., 3., 3., 3., 4., 4., 5., 5., 6., 7., 8., 10., 13., 21.])
>>> # Fit the logser_uptrunc to data and estimate the parameters >>> md.logser_uptrunc.fit_mle(rad) (0.8957385644316679, 114.0)
Methods
rvs(p, b, loc=0, size=1) Random variates. pmf(x, p, b, loc=0) Probability mass function. logpmf(x, p, b, loc=0) Log of the probability mass function. cdf(x, p, b, loc=0) Cumulative density function. logcdf(x, p, b, loc=0) Log of the cumulative density function. sf(x, p, b, loc=0) Survival function (1-cdf — sometimes more accurate). logsf(x, p, b, loc=0) Log of the survival function. ppf(q, p, b, loc=0) Percent point function (inverse of cdf — percentiles). isf(q, p, b, loc=0) Inverse survival function (inverse of sf). stats(p, b, loc=0, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’). entropy(p, b, loc=0) (Differential) entropy of the RV. expect(func, p, b, loc=0, lb=None, ub=None, conditional=False) Expected value of a function (of one argument) with respect to the distribution. median(p, b, loc=0) Median of the distribution. mean(p, b, loc=0) Mean of the distribution. var(p, b, loc=0) Variance of the distribution. std(p, b, loc=0) Standard deviation of the distribution. interval(alpha, p, b, loc=0) Endpoints of the range that contains alpha percent of the distribution