macroeco.models.plnorm_ztrunc¶
- macroeco.models.plnorm_ztrunc = <macroeco.models._distributions.plnorm_ztrunc_gen object at 0x108661ad0>¶
Zero-truncated poisson lognormal random variable.
Parameters: x : array_like
quantiles
q : array_like
lower or upper tail probability
mu, sigma : array_like
shape parameters
loc : array_like, optional
location parameter (default=0)
size : int or tuple of ints, optional
shape of random variates (default computed from input arguments )
moments : str, optional
composed of letters [‘mvsk’] specifying which moments to compute where ‘m’ = mean, ‘v’ = variance, ‘s’ = (Fisher’s) skew and ‘k’ = (Fisher’s) kurtosis. (default=’mv’)
Alternatively, the object may be called (as a function) to fix the shape and :
location parameters returning a “frozen” discrete RV object: :
rv = plnorm_ztrunc(mu, sigma, loc=0) :
- Frozen RV object with the same methods but holding the given shape and location fixed.
mu : float
mu parameter of the poisson lognormal
sigma : float
sigma parameter of the poisson lognormal
Notes
The pmf method was adopted directly from the VGAM package in R. The VGAM R package was adopted directly from Bulmer (1974) [1]
The fit_mle function was adapted from Ethan White’s pln_solver function in macroeco_distributions (https://github.com/weecology/macroecotools)
References
[1] Bulmer, M. G. (1974). On fitting the poisson lognormal distribution to species bundance data. Biometrics, 30, 101-110. Examples
>>> import macroeco.models as md
>>> # Get the pmf for the zero-truncated poisson lognormal with mu = -1 >>> # and sigma = 3 >>> md.plnorm_ztrunc.pmf(np.arange(1, 11), -1, 3) array([ 0.27334111, 0.12990549, 0.08013071, 0.05598538, 0.04206434, 0.03314746, 0.02701614, 0.02257919, 0.019242 , 0.01665499])
>>> md.plnorm_ztrunc.pmf([1, 50, 1000], 2.34, 5) array([ 9.27474648e-02, 2.12916164e-03, 7.36783061e-05])
>>> # Get the CDF >>> md.plnorm_ztrunc.cdf([1, 15, 10000], mu=.1, sigma=2) array([ 0.27575055, 0.84270355, 0.99999442])
>>> # Rank abundance distribution. For speed, set crit = 0 or else the >>> # calculation is very slow. >>> md.plnorm_ztrunc.rank(20, 1, 1, crit=0, upper=40) array([ 1., 1., 2., 2., 2., 2., 2., 3., 3., 4., 5., 5., 6., 6., 7., 7., 8., 11., 14., 22.])
>>> # Fit the the plnorm to data >>> data = np.array([1,1,1,1,1,2,2,2,3,3,4,4,5,5,6,6,12,45,67]) >>> md.plnorm_ztrunc.fit_mle(data) (0.19056468723097392, 1.7698965441710266)
Methods
rvs(mu, sigma, loc=0, size=1) Random variates. pmf(x, mu, sigma, loc=0) Probability mass function. logpmf(x, mu, sigma, loc=0) Log of the probability mass function. cdf(x, mu, sigma, loc=0) Cumulative density function. logcdf(x, mu, sigma, loc=0) Log of the cumulative density function. sf(x, mu, sigma, loc=0) Survival function (1-cdf — sometimes more accurate). logsf(x, mu, sigma, loc=0) Log of the survival function. ppf(q, mu, sigma, loc=0) Percent point function (inverse of cdf — percentiles). isf(q, mu, sigma, loc=0) Inverse survival function (inverse of sf). stats(mu, sigma, loc=0, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’). entropy(mu, sigma, loc=0) (Differential) entropy of the RV. expect(func, mu, sigma, loc=0, lb=None, ub=None, conditional=False) Expected value of a function (of one argument) with respect to the distribution. median(mu, sigma, loc=0) Median of the distribution. mean(mu, sigma, loc=0) Mean of the distribution. var(mu, sigma, loc=0) Variance of the distribution. std(mu, sigma, loc=0) Standard deviation of the distribution. interval(alpha, mu, sigma, loc=0) Endpoints of the range that contains alpha percent of the distribution