macroeco.models.geom¶
- macroeco.models.geom = <macroeco.models._distributions.geom_gen object at 0x1082d3f50>¶
A geometric discrete random variable.
This implementation of the geometric distribution differs from that in scipy.stats, as the distribution here has support from 0 to inf.
\[P(x) = (1-p)^{x} p\]for x >= 0. The loc parameter is not used.
Parameters: x : array_like
quantiles
q : array_like
lower or upper tail probability
p : array_like
shape parameters
loc : array_like, optional
location parameter (default=0)
size : int or tuple of ints, optional
shape of random variates (default computed from input arguments )
moments : str, optional
composed of letters [‘mvsk’] specifying which moments to compute where ‘m’ = mean, ‘v’ = variance, ‘s’ = (Fisher’s) skew and ‘k’ = (Fisher’s) kurtosis. (default=’mv’)
Alternatively, the object may be called (as a function) to fix the shape and :
location parameters returning a “frozen” discrete RV object: :
rv = geom(p, loc=0) :
- Frozen RV object with the same methods but holding the given shape and location fixed.
mu : float
distribution mean
Examples
>>> import macroeco.models as md
>>> # Get the geom_parameters from a mean >>> mu = 20 >>> p = md.geom.translate_args(mu) 0.047619047619047616
>>> # Get the pmf >>> md.geom.pmf(np.arange(0, 5), p) array([ 0.04761905, 0.04535147, 0.04319188, 0.04113512, 0.03917631])
>>> # Generate a rank abundance distribution >>> rad = md.geom.rank(20, p) >>> rad array([ 0., 1., 2., 3., 5., 6., 8., 9., 11., 13., 15., 17., 20., 23., 26., 30., 35., 42., 53., 75.])
>>> # Fit the geom to data >>> md.geom.fit_mle(rad) (0.048309178743961352,)
Methods
rvs(p, loc=0, size=1) Random variates. pmf(x, p, loc=0) Probability mass function. logpmf(x, p, loc=0) Log of the probability mass function. cdf(x, p, loc=0) Cumulative density function. logcdf(x, p, loc=0) Log of the cumulative density function. sf(x, p, loc=0) Survival function (1-cdf — sometimes more accurate). logsf(x, p, loc=0) Log of the survival function. ppf(q, p, loc=0) Percent point function (inverse of cdf — percentiles). isf(q, p, loc=0) Inverse survival function (inverse of sf). stats(p, loc=0, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’). entropy(p, loc=0) (Differential) entropy of the RV. expect(func, p, loc=0, lb=None, ub=None, conditional=False) Expected value of a function (of one argument) with respect to the distribution. median(p, loc=0) Median of the distribution. mean(p, loc=0) Mean of the distribution. var(p, loc=0) Variance of the distribution. std(p, loc=0) Standard deviation of the distribution. interval(alpha, p, loc=0) Endpoints of the range that contains alpha percent of the distribution