macroeco.models.geom_uptrunc¶
- macroeco.models.geom_uptrunc = <macroeco.models._distributions.geom_uptrunc_gen object at 0x1086530d0>¶
An upper-truncated geometric discrete random variable.
\[P(x) = \frac{(1-p)^{x} p}{1 - (1-p)^{b+1}}\]for x >= 0. geom_uptrunc takes two shape parameters: p and b, the upper limit. The loc parameter is not used.
Parameters: x : array_like
quantiles
q : array_like
lower or upper tail probability
p, b : array_like
shape parameters
loc : array_like, optional
location parameter (default=0)
size : int or tuple of ints, optional
shape of random variates (default computed from input arguments )
moments : str, optional
composed of letters [‘mvsk’] specifying which moments to compute where ‘m’ = mean, ‘v’ = variance, ‘s’ = (Fisher’s) skew and ‘k’ = (Fisher’s) kurtosis. (default=’mv’)
Alternatively, the object may be called (as a function) to fix the shape and :
location parameters returning a “frozen” discrete RV object: :
rv = geom_uptrunc(p, b, loc=0) :
- Frozen RV object with the same methods but holding the given shape and location fixed.
mu : float
distribution mean
b : float
distribution upper limit, defaults to sum of data
Notes
The boundary p = 1 is a special case in which the ratio between successive terms of the distribution is 1 (i.e., the pmf is uniform). This arises when the mean of the distribution is precisely one-half the upper limit.
This distribution is known as the Pi distribution in the MaxEnt Theory of Ecology [1], where the p parameter is equivalent to 1 - exp(-lambda). The special case of a uniform pmf has been described as HEAP [2].
References
[1] Harte, J. (2011). Maximum Entropy and Ecology: A Theory of Abundance, Distribution, and Energetics (p. 264). Oxford, United Kingdom: Oxford University Press. [2] Harte, J., Conlisk, E., Ostling, A., Green, J. L., & Smith, A. B. (2005). A theory of spatial structure in ecological communities at multiple spatial scales. Ecological Monographs, 75(2), 179-197. Examples
>>> import macroeco.models as md
>>> # Get the geom parameters from a mean and upper limit >>> mu = 20; b = 200 >>> p, b = md.geom_uptrunc.translate_args(mu, b) >>> p, b (array(0.047592556687674925), 200)
>>> # Get the pmf >>> md.geom_uptrunc.pmf(np.arange(0, 5), p, b) array([ 0.04759519, 0.04533002, 0.04317264, 0.04111795, 0.03916104])
>>> # Generate a rank abundance distribution >>> rad = md.geom_uptrunc.rank(20, p, b) >>> rad array([ 0., 1., 2., 3., 5., 6., 8., 9., 11., 13., 15., 17., 20., 23., 26., 30., 35., 42., 53., 75.])
>>> # Fit the geom to data >>> md.geom_uptrunc.fit_mle(rad) (0.048309175638750035, 394.0)
Methods
rvs(p, b, loc=0, size=1) Random variates. pmf(x, p, b, loc=0) Probability mass function. logpmf(x, p, b, loc=0) Log of the probability mass function. cdf(x, p, b, loc=0) Cumulative density function. logcdf(x, p, b, loc=0) Log of the cumulative density function. sf(x, p, b, loc=0) Survival function (1-cdf — sometimes more accurate). logsf(x, p, b, loc=0) Log of the survival function. ppf(q, p, b, loc=0) Percent point function (inverse of cdf — percentiles). isf(q, p, b, loc=0) Inverse survival function (inverse of sf). stats(p, b, loc=0, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’). entropy(p, b, loc=0) (Differential) entropy of the RV. expect(func, p, b, loc=0, lb=None, ub=None, conditional=False) Expected value of a function (of one argument) with respect to the distribution. median(p, b, loc=0) Median of the distribution. mean(p, b, loc=0) Mean of the distribution. var(p, b, loc=0) Variance of the distribution. std(p, b, loc=0) Standard deviation of the distribution. interval(alpha, p, b, loc=0) Endpoints of the range that contains alpha percent of the distribution