macroeco.models.nbinom¶
- macroeco.models.nbinom = <macroeco.models._distributions.nbinom_gen object at 0x108653710>¶
A negative binomial discrete random variable.
This implementation of the negative binomial distribution differs from that in scipy.stats, as the distribution here uses the more common ecological parameterization.
\[P(x) = \frac{\gamma (k + x)}{\gamma(k) x!} \left(\frac{k}{k+\mu}\right)^k \left(\frac{\mu}{k+\mu}\right)^x\]for x >= 0. In the traditional parameterization, n = k_agg (the size parameter) and p = k_agg / (k_agg + mu). the loc parameter is not used.
Parameters: x : array_like
quantiles
q : array_like
lower or upper tail probability
mu, k_agg : array_like
shape parameters
loc : array_like, optional
location parameter (default=0)
size : int or tuple of ints, optional
shape of random variates (default computed from input arguments )
moments : str, optional
composed of letters [‘mvsk’] specifying which moments to compute where ‘m’ = mean, ‘v’ = variance, ‘s’ = (Fisher’s) skew and ‘k’ = (Fisher’s) kurtosis. (default=’mv’)
Alternatively, the object may be called (as a function) to fix the shape and :
location parameters returning a “frozen” discrete RV object: :
rv = nbinom(mu, k_agg, loc=0) :
- Frozen RV object with the same methods but holding the given shape and location fixed.
mu : float
distribution mean
k_agg : float
clustering parameter
Examples
>>> import macroeco.models as md
>>> # Define a NBD distribution with mean = 10 and aggregation = 2 >>> nbd_dist = md.nbinom(mu=10, k_agg=2)
>>> # Get the pmf for some values >>> nbd_dist.pmf(range(1, 10)) array([ 0.0462963 , 0.05787037, 0.06430041, 0.0669796 , 0.0669796 , 0.06511905, 0.06201814, 0.05814201, 0.05383519])
>>> # Get the cdf for some values >>> nbd_dist.cdf(range(1, 10)) array([ 0.07407407, 0.13194444, 0.19624486, 0.26322445, 0.33020405, 0.3953231 , 0.45734124, 0.51548325, 0.56931845])
>>> # Get the logpmf using a different notation >>> md.nbinom.logpmf(range(1, 10), 10, 2) array([-3.07269331, -2.84954976, -2.74418925, -2.70336725, -2.70336725, -2.73153813, -2.78032829, -2.84486682, -2.92182786])
>>> # Get a random sample >>> samp = md.nbinom.rvs(mu=10, k_agg=1, size=10) >>> samp array([12, 1, 4, 10, 23, 0, 12, 4, 1, 15])
>>> # Get the rank abundance distribution for n = 20 >>> rad = md.nbinom.rank(20, 10, 1) >>> rad array([ 0., 0., 0., 1., 1., 2., 3., 3., 4., 5., 6., 7., 9., 10., 12., 14., 17., 20., 26., 37.])
Methods
rvs(mu, k_agg, loc=0, size=1) Random variates. pmf(x, mu, k_agg, loc=0) Probability mass function. logpmf(x, mu, k_agg, loc=0) Log of the probability mass function. cdf(x, mu, k_agg, loc=0) Cumulative density function. logcdf(x, mu, k_agg, loc=0) Log of the cumulative density function. sf(x, mu, k_agg, loc=0) Survival function (1-cdf — sometimes more accurate). logsf(x, mu, k_agg, loc=0) Log of the survival function. ppf(q, mu, k_agg, loc=0) Percent point function (inverse of cdf — percentiles). isf(q, mu, k_agg, loc=0) Inverse survival function (inverse of sf). stats(mu, k_agg, loc=0, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’). entropy(mu, k_agg, loc=0) (Differential) entropy of the RV. expect(func, mu, k_agg, loc=0, lb=None, ub=None, conditional=False) Expected value of a function (of one argument) with respect to the distribution. median(mu, k_agg, loc=0) Median of the distribution. mean(mu, k_agg, loc=0) Mean of the distribution. var(mu, k_agg, loc=0) Variance of the distribution. std(mu, k_agg, loc=0) Standard deviation of the distribution. interval(alpha, mu, k_agg, loc=0) Endpoints of the range that contains alpha percent of the distribution